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Systems of coupled second-order ordinary differential equations, arising in quantum 
mechanical scattering problems, are frequently solved over a fixed mesh by de Vogelaere’s 
method (a fourth-order step-by-step method) and the reactance matrix subsequently 
calculated. The numerical integration stage of any such problem invariably consumes a large 
proportion of the computer time required to solve the problem in full. Initial tests with an 
automatic implementation of de Vogelaere’s method to calculate the reactance matrix for elec- 
tron-hydrogen scattering in the “strong-coupling approximation” appear very promising, with 
savings of over one-half of the total number of function evaluations required in the numerical 
integration stage. 

1. INTR~DLJcTI~N 

In atomic and nuclear scattering problems we are interested in solving sets of 
coupled homogeneous second-order differential equations of the general form 

- kf Y;(X) + g v,(X) Y,U(X), ] i = I,..., N, (1) 
j=l 

subject to the boundary conditions 

YXX) - x 
Iif I 

x-0 

Y;(x) - x-1o3 din sin(kix - f/in) + Ri, cos(kix - il;~), 

s ai, exp(-I ki I ~1, 

kf > 0, 

k; < 0, 

tbl) 

WI 

where the index v serves to identify the initial state of the system. The potential 
functions V,(x) are such that x’V,~(X) + 0 as x -+ 0 and V,(x) + 0 rapidly as x -+ co. 
In the so-called asymptotic region (x > x, say) the potentials Vij are negligible. R, the 
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symmetric reactance matrix, is the object of most calculations for atomic collision 
processes and the solution of Eqs. (1) generally involves three stages: 

(i) unless the differential equation solver is self starting, suitable starting 
values must be generated; 

(ii) the integration of the system of second-order differential equations; 
(iii) the calculation of R. 

In what follows we shall assume that stage (ii) is effected by means of the direct 
fourth-order method of de Vogelaere [ 11. By a direct method we mean a method 
which treats the differential equations in their original form, rather than as a larger 
first-order system. The question of whether it is more efficient to treat the second- 
order system directly or to reduce it to a first-order system is open to debate and is 
not the subject of this paper. Rather, we seek to improve on existing implementations 
of de Vogelaere’s method for the direct solution of systems of equations of type (1). 
De Vogelaere’s method has been used extensively (e.g., see [2-51) to solve such 
equations. 

In particular Chandra [6] has published a computer program which unfortunately 
makes substantial demands on the user: the integration mesh is specified u priori by 
the user, based on his knowledge of the expected behaviour of the solution. The 
accuracy of the calculation therefore depends on the chosen mesh. In addition the 
choice of steplength strategy is left entirely to the user; the integration mesh is 
divided into a number of predetermined regions and changes in steplength occur only 
when stepping from one region to another, and then only by a factor of 2 or f. No 
regard is paid to the estimation of the local truncation error of the method and to its 
subsequent control. Indeed, until recently (see [7]), despite the frequent use of de 
Vogelaere’s method, the author was unaware of any previous error analysis for the 
method. In the context of the practical solution of ordinary differential equations, the 
basic idea of varying the steplength so that an estineate of the local truncation error 
of a numerical method remains less than a specified error tolerance at each step of 
the integration, is well developed and understood (for example, see Hull et al. [8]). 
Clearly, the use of such a facility should prove more el’ficient than computing with a 
constant steplength. The results of Coleman and Mohamed [7] have been used (see 
[9]) to provide an automatic implementation of de Vogelaere’s method applied to the 
solution of the single-channel Schriidinger equation; in addition the method has been 
compared with other automatic versions of popular techniques for the solution of 
single-channel equations (see [lo]). Appealing features of de Vogelaere’s method are 
the low-cost provision of local error estimates and the ease with which necessary 
changes in steplength may be performed (see Sects. 2.1 and 2.2). The step-by-step 
integration of (1) consumes a large proportion of the total computing time and it is 
the aim of this paper to show that with minor modifications, an existing implemen- 
tation (namely that of Chandra [a]) of the fixed-step de Vogelaere method for the 
numerical solution of the equations in (1) can be extended to provide a fully 
automatic method, with the advantage of substantial savings in the number of 
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integration steps and hence the number of function evaluations required in the 
numerical integration stage. 

In particular, (in Sect. 3), we shall describe a two-channel test problem, previously 
solved by Chandra. Chandra’s program can be used for problems involving open and 
closed channels; for the sake of completeness we give below the strategy used by 
Chandra to solve such problems. Our modified version will use the same strategy but 
adopt an in-built error control on the local error of the method. 

If, following Chandra, we assume that there are n, open channels (corresponding 
to kf > 0, i = l,..., n,) and n,=N-nn, closed channels (corresponding to kf < 0, 
i = n, + l,..., N) stages (i) and (ii) consist of the following: If the integration is 
started at x0, in the vicinity of the origin, use can be made of the initial boundary 
condition (la) to provide the necessary 2N values for the approximate solution and 
its first derivative at x,,. N different choices of the initial boundary conditions should 
be specified, as the general solution of (1) involves N arbitrary constants and N 
linearly independent solutions. Thus a total of N (hopefully) linearly independent 
solution vectors are generated on integrating from x0. Chandra chooses yij(xO) = 
bijx$+’ and (d/h) vij(xO) = aij(li + 1) xi for i,j = l,..., N, with yjj(x) the solution at x 
of the ith equation solved subject to the jth boundary condition. Now find x, such 
that an asymptotic expansion is valid for x > x,. If the outward integration were 
continued as far as x, the solution would contain undesirable components of 
exp(l kil x) (i = n, + l,..., N) in the closed channels, and for large values of x these 
terms would dominate the required physical solutions. The standard compromise is to 
integrate inwards N times from x, to some value x,, where the offending terms from 
the inward and outward integrations have not become significant; since N + n, 
constants can be specified arbitrarily in the asymptotic region (see Eqs. (lb)), 
(N + n,) different choices of the asymptotic boundary conditions will lead to a total 
of (N + n,) linearly independent solution vectors in the region [xm, x,]; Chandra 
computes the asymptotic boundary conditions at x, as the solutions of the asymptotic 
form of (1). The solutions in the inner region [x,,, x,] and the outer region [x,, x,], 
which Chandra generates in matrices of dimension N X N and N X (N + n,), respec- 
tively, must now be matched at the point x, so that the solutions and their first 
derivatives are continuous at x,. Stage (iii) then requires the solution of the matching 
equations thus enabling the coefficients of the n, x n, matrix R to be extracted. 
(Further details of this procedure are contained in [6].) 

The two-channel test problem to be considered in this paper has both channels 
open, so that only outward integration need be performed. However, for some reason 
Chandra has chosen to treat this problem somewhat artificially by performing both 
inward and outward integration with matching at a pre-assigned point x, # x,. Thus, 
in order to provide a meaningful comparison of Chandra’s program with our 
automatic program for this example, we treat the problem in a similar fashion, 
although clearly needless inefftciency will arise in both approaches. It is hoped that 
future refinements to the automatic program will allow the solution of more complex 
problems to be considered. 

In Section 2 we describe the method of de Vogelaere to solve a single equation, 
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with an obvious extension to systems of coupled equations. A suitable method for 
generating the required starting values is presented together with a means of 
estimating (at no extra cost) the leading term in the local truncation error at each 
step of the calculation. An automatic program using de Vogelaere’s method to solve 
the single channel Schrodinger equation has previously been presented (see [9]) and 
the strategy described in this paper, for choosing a steplength based on the magnitude 
of the estimated local error, is a coupled-channel version of that adopted in [9]. 
Section 3 describes the two-channel test problem, previously solved by Chandra, and 
we comment on the performance of a modified automatic version (CHANDRAM) of 
Chandra’s program on this problem. (CHANDRAM is a production code which is 
not currently available for general use.) 

2. NUMERICAL INTEGRATION 

2.1. De Vogelaere’s Method for a Single Equation 

This is a fourth-order step-by-step method designed to solve the second-order 
differential equation with first derivative missing: 

-g2 Y(X) =fb Y(X)> 

subject to the initial conditions 

y(xo) =yo, z(xo) = J$ i _ = zo. 
x--x0 

For a fixed steplength h the general step of the algorithm, leading from xzn to x2n + 2 = 
x2,, + 2h, is as follows. 

Given y2n p zZnY f2,, and f2n- l 

(9 yznil =y2,, +hz2, +- !2 (4f,, -fh-,) 

00 fin+, =f(~~~+d~~+J 

(iii) 
h2 

y2n+2 =y2” + 2hz2, + - (4&+ 1 + 2fJ 3 

where 

Y, =Yk)9 
dy 

ZnNdX x=x”’ f” =f(x, 9 Y,>* 
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[The generalisation of the algorithm to the system 

6 Yi(X) ‘si(X,Y1(X)t Y2(X) 9...7 Y,(X)), i = 1, 2 ,..., N, 

is a direct extension of the method for a single equation.] 

De Vogelaere’s method requires two function evaluations per step and makes use 
of an intermediate point at the midpoint of the iterval [x2,, , x2,,+ J; the solution is 
predicted at this point to third order in (i) and the predicted value is then used in the 
corrector equation (iii) to obtain the solution correct to fourth order at the end of the 
interval. Equation (v) is just Simpson’s rule and provides a fourth-order approx- 
imation to the derivative of the solution at the end of the interval. 

Cyclic use of (i)-(v) enables the solution to be obtained over the range of 
integration and it only remains to start the method. The values of y, and z. above are 
insufficient to start the calculation and de Vogelaere [ I] suggested two separate 
methods for providing the additional starting value. 

Merhod 1. 

Now use (i)-(v) with n = 0, l,... . 

Method 2. 

~1=yO+hz,+;f,+@(h3) 

x =f(x19Y1) 

y”, =y, + hz, +; (2f0 +A) + @(h4) 

Now use (ii)-(v) with n = 0 and (i)-(v) with n = 1, 2,... . 
We note here that Method 1 had been used exclusively, until very recently (see 

[91), in all applications of de Vogelaere’s method to solve the radial Schriidinger 
equation. The methods are equivalent in terms of asymptotic error estimates, both 
giving third-order approximations for y(xl). The leading terms in the error expansions 
for each method are of fourth order and are very similar in form; however, if we 
consider the equation y”(x) =f(x, y(x)) in the form y”(x) = g(x) y(x), then it 
transpires that the fifth-order contributions to the error expansions for Methods 1 and 
2 involve a factor of g(xel) and g(xl), respectively. For the radial Schrijdinger 
equation with nonzero angular momentum, 1 g(x)1 is generally a rapidly decreasing 



462 J. L. MOHAMED 

function of x near the origin. Thus g(x- ,) may be substantially greater than g(x,) and 
the contribution to the error from the fifth-order term may exceed that from the 
fourth-order term. A numerical example, given in Coleman and Mohamed [9], clearly 
demonstrates this effect by showing that, for sufficiently accurate starting values y,, 
z,, (andf,), the ratio of g(x- i) to g(xi) is close to the factor by which the error in the 
approximation to y(x,) obtained by Method 1 exceeds that obtained by Method 2. 
We conclude that when solving the Schrodinger equation, Method 2 of starting is 
superior to Method 1. Chandra’s program uses Method 1, the less accurate method. 

An appealing feature of de Vogelaere’s method is that it allows an arbitrary change 
of steplength without the need for further function evaluations. Suppose a steplength 
of 2h, is used as far as xzn. If now we change the steplength to 2h, = 2(&i) 

, *hi , *hi , 
I I I 

12°C4 XZ”C-2 X2” 

*hz I 

XZ”+Z 

a suffkiently accurate (first-order) estimate for f at x2” - h, is given by 

fin- 1 =f*, + c(f*n- 1 -fin>* 

2.2. Truncation Error Estimates 

The leading term in the local truncation error in the step from x2n to x2”+* is 
(2h5/45)f;; and an automatic routine based on de Vogelaere’s method will require an 
estimate of this error at each step of the integration. For the case where a constant 
steplength of 2h is used over two consecutive intervals [xznv2, xZn] and [x2,, , x2,,+ *] 
de Vogelaere (see [I]) calculates fourth-order approximations y$,-, , y&+ , for 
y(~*~- i), y(x2”+ i) in terms of previously calculated information: 

yfn-, =yzn - kn +$ (7fzn + G-, -fin-z) 

* 
Y2,+1 =y*n+* - kn+2 +$f,.+, +6fzn+l -fzn) 

Then a suitable linear combination of the quantities (y&+ I - y2,,+ ,) and 
(y& _ , - y,,- i) may be used to estimate e, the local truncation error per unit step. 
We choose to control the estimated error per unit step rather than the error per step; 
the former quantity varies approximately as h4, reflecting the behaviour of the global 
error of the method (see [7]), w h ereas the latter is proportional to h”, reflecting the 
behaviour of the local truncation error. In addition when a differential equation is 
integrated over a fixed interval, a decrease in h results in an increased number of 
steps, and the adopted error criterion takes this effect into account. We have 

e=- 
4;h ‘(’ 2*n+1 -Yzn+1 > - (Yz*,-1 -Y*,-*)I- 
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This expression must be modified when the steplength is changed, so as to cater for 
all possible sequences of steplengths (see [7]). There are three separate cases: 

(a) Immediately following a step change. 

, Zh, , 2hl , 
I I I 

Xzn-4 X2”-2 X2” 

2hz I h, = ch, 
Xl”+2 

e= 
WY&+, -yzn+1 I- 4YZ-1 -Yzn-111 

5h,(12 + 7c - c’) 9 a = f c3(2 + c). 

(b) The second step after a step change. 

, 2h, , 2h, , 24 I 2hz I 
I I I h, = ch, 

X2”--4 Xzn--2 X2” X2ntZ Xzn+4 

e= 
4C[B(Y,*,+, -Yz,+,) - (Y&+1 -Yz”+*)l 

5h,(l + 5c + 3~‘) , B’f 

(c) Two step changes in succession. 

, 2h, , hl I 24 , 2h3 , h, = ch, 
I I I I 

X2”-4 Xzn--2 X2” X2nt2 x2.+4 
h,=c,h, 

e= 24cW(Y,*,+, -Ye,+,) - a,(~,*,+, -Y~~+~)I 
5&y 

, +;(2+c,) 

y = ?(I2 + 7c, -c:> + c(20 + 12c, - 2c:) + 2c, + 4. 

2.3. Steplength Strategy for Coupled-Channel Routine 

The user is required to specify as input a parameter E which is the largest allowed 
local error per unit step. Since the magnitude of the solution may not be known in 
advance, the modification (CHANDRAM) to Chandra’s program (CHANDRA) 
calculates at each step 

t(j=E’ m~{191Y~jI}9 i = l,..., N (2) 
j = l,..., M 

where M= N, N + n, in the outward, inward integrations, respectively, and y, is the 
calculated solution of the ith equation for the jth boundary condition at the end of 
the step from X~,,-~ to x2,. This provides an absolute or relative error criterion 
according as the calculated solution is less than or greater than unity and the step is 
accepted if the relation 

is satisfied for all i and j. 
Since the local error per unit step eij (corresponding to yij) varies approximately as 
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h4, a steplength of ah gives a corresponding value of approximately a4eij. Thus if (3) 
is not satisfied for a particular i, j pair the step is rejected and the solution restarted 
from xZn-2 with a decreased steplength ar*h; for each i, j pair which violates (3) the 
quantity 

i 1 
‘I4 0.5 tij 

‘O= leijl 

is formed, with a* denoting the minimum of all such quantities. 
If in addition to (3) the relation 

C4 leijl < 0.57, 

is satisfied for three consecutive steps (where C > I), an increase in steplength, by the 
factor C, is performed. Here C is set to be 2 and the value 0.5 is a tuning factor. A 
more obvious strategy would be to choose C such that 

is satisfied; however, experience has shown that the adoption of such a strategy for 
the numerical solution of a single differential equation often results in a change of 
steplength being performed at almost every step. The restrictions on C are introduced 
to avoid frequent increases by small amounts and, much worse, increases followed by 
immediate decreases. (The particular choice of C = 2 also agrees with the factor used 
by Chandra for allowed increases in the steplength.) 

The initial steplength for the inner region of integration must be supplied by the 
user and this value changes according to the strategy above. If on approaching x, 
(the end point of the inner region) the current steplength h, would cause us to step 
beyond the matching point, a decrease in steplength from h, to h, is forced; the initial 
steplength for the outer region is then taken to be -hi. 

3. TEST RUN 

The modified automatic version (CHANDRAM) of Chandra’s FORTRAN 1V 
program (CHANDRA) was run for a range of values of E on an IBM 370/168 
computer (using double precision for all real variables) to calculate the reactance 
matrix for electron-hydrogen scattering in the “strong-coupling approximation,” 
where only the 1s and 2s atomic states are included in the eigenfunction expansion, 
with exchange neglected. This is a two-channel problem, corresponding to Chandra’s 
test run No. 1 (see [6]), with potentials V,(x) given explicitly by 
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VI,(x) = -2 
( ) 

1 + + exp(-2x) 

4G 
V,*(x) = 27 - (2 + 3x) exp(-1.5x) = V,,(x) 

V*,(x)=-2 $+f+fx+fx2 
( 1 ew(-4 

CHANDRA uses the following user-supplied data: 

N=2=n,; 1, = 0 = 1, ; k: = 1.0 a.u.; k: = 0.25 a.u. 

The integration mesh is divided into 4 regions: 

[x0, XII [-%,x21 [x2, x31 [x3 7 x41 
region I region 2 region 3 region 4 

where 

x0 = 0.0304572 

x, =x, = 1.52286 

x2 = 3.959436 

x3 = 8.832588 

xq =x, = 13.70574. 

Outward integration is performed over Ix,,, x, 1 for N = 2 different choices of the 
initial boundary conditions and with a constant steplength of h = 0.0304572. Inward 
integration is performed over [x3, x,1, [x,, x1], [xi, x21 for (N + n,) = 4 different 
choices of the asymptotic boundary conditions, with constant steplengths of 8/z, 4h, 
2h, respectively. The values of the potential functions Vij at the mesh points must be 
supplied by the user in advance of the calculation; since the number of points in the 
integration mesh is fixed so is the number of function evaluations which are required. 

CHANDRAM uses the same starting points x0 and x, and the same boundary 
conditions as in CHANDRA (see Sect. 1) with an initial steplength of h = 0.0304572 
in the inner region. h is varied automatically during the outward and inward 
integrations and the parameter E takes the following values: lo-“, )2 = 3, 4, 5, 6, 8. 
The values of the potentials Vii at the mesh points are determined automatically as 
the calculation proceeds, from the analytic expressions. 

The elements of the 2 x 2 symmetric reactance matrix R,, obtained from 
CHANDRA, were compared with those of the reactance matrix RCM,E obtained from 
CHANDRAM, for the range of values of E. By inspection the elements of R, are best 
reproduced by those of RCM,IO-4. These matrices are shown below, together with 
R CM,lO-8’ 
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TABLE I 

Ratio of hmax,i to h,,i for Given Values of E and i 

10-l 1om4 10ms 1O-6 10-a 

1 8 8 4 4 0.70 
2 8 4 4 2 0.35 
3 4 2 2 1 0.18 
4 2 1 1 0.5 0.09 

t 

1.138853 3.854753 (-1) 
Rc = 3.854697 (-1) -3.256686 (-1) 

R 
i 

1.138839 3.854565 (-1) 
CMq10-4 = 3.854490 (-1) -3.256349 (-1) 1 

R 
( 

1.138996 3.855010 (-1) 
CMq10-8= 3.855010 (-1) -3.256568 (-1) 1 

The value E = lo-’ is extremely stringent but we may regard the computed elements 
of the reactance matrix to be “exact” since CHANDRAM uses steplengths which are 
considerably smaller than those used by CHANDRA. 

To illustrate the magnitude of the steplength which CHANDRAM may use while 
still satisfying the appropriate error criterion, we show in Table I the ratio of the 
maximum steplength hmaX,i used by CHANDRAM in region i for a given E to the 
constant steplength h,,i used by CHANDRA in the same region. In addition the 
number of function evaluations n required by each program is shown in Table II. 

Table I shows that greater magnifications of the steplength used by CHANDRA 
are allowed in CHANDRAM for the larger values of E, as we would expect. This is 
also reflected in the function evaluation counts of Table II. (Note that the number of 

TABLE II 

Numbers of Function Evaluations Required by CHANDRA and 
CHANDRAM 

Program E n 

CHANDRA - 2004 
CHANDRAM lo-” 592 

1o-4 944 
10-s 1024 
1o-6 1880 
lo-& 5500 
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function evaluations required by CHANDRAM could be further reduced by the 
adoption of a steplength control policy based on the estimated error per step, rather 
than on the error per unit step.) 

4. CONCLUSION 

The accuracy of the reactance matrix produced by CHANDRAM when E = 10e4 
is about the same as that produced by CHANDRA, and it should be noted that for 
this value of E, CHANDRAM requires less than half the number of function 
evaluations of CHANDRA. In practice, solutions are not normally required to high 
numerical accuracy, since the accuracy of the solution of the physical problem is 
determined to a large extent by the number of channels which are included. The 
results above, although limited to one test problem, do suggest that the incorporation 
of an automatic steplength changing facility in the solution of the radial SchrGdinger 
equations, will bring substantial savings in the number of function evaluations 
required in the numerical integration stage. Since a large proportion of the computer 
time to solve the problem is devoted to this stage the introduction of such a facility 
would appear to be highly desirable; with the resulting increased efficiency in solving 
the differential equations, we would hope to be able to solve much larger systems of 
equations than has hitherto been possible. 
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